PSEUDO JAHN-TELLER ORIGIN OF THE PROTON-TRANSFER ENERGY BARRIER IN THE HYDROGEN-BONDED [FHF] SYSTEM

Natalia Gorinchoy, Iolanta Balan, Victor Polinger, Isaak Bersuker

Abstract. The results of ab initio calculations of the adiabatic potential energy surfaces for the proton-bound [FHF] system at different F-F distances have been rationalized in the framework of the vibronic theory. It is shown that the instability of the symmetric $D_{\infty h}$ structure at increased F···F distances and the proton displacement to one of the fluorine atoms are due to the pseudo Jahn–Teller mixing of the ground electronic state $1\Sigma_g^+$ with the lowest excited state of $1\Sigma_u$ symmetry through the asymmetric σ_u vibrational mode.

Keywords: proton transfer, hydrogen bond, pseudo Jahn–Teller effect, potential energy surface, bifluoride anion.

Received: 20 April 2021/ Revised final: 17 May 2021/ Accepted: 21 May 2021