EFFECT OF THE NATURE OF SURFACANT ON THE REACTIVITY OF C₅N-DIPHENYLNITRONE TOWARDS ACRYLONITRILE IN DIFFERENT MICROEMULSION SYSTEMS

Kahina Hamza a,b*, Abdelkader Touati a, Ahmed Ait-Yahia a,b, Michel Baltas c, Christiane André Barres c, Saâd Moulay d

aThe Laboratory for Research on Bioactive Products and the Valorization of Biomass, Ecole Normale Supérieure, 92, Vieux-Kouba str., Algiers, Algeria
bFaculty of Sciences, Saâd Dahlab University of Blida, 270, Soumâa Road str., Blida 09000, Algeria
cLaboratory of Synthesis and Physico-Chemistry of Molecules of Biological Interest, Paul Sabatier University, 118, Narbonne Road str., Toulouse 31062, France
dFaculty of Technology, Saâd Dahlab University of Blida, 270, Soumâa Road str., Blida 09000, Algeria
*e-mail: kahina_hamza@yahoo.fr; phone: (+213) 21 297 511; fax: (+213) 21 282 067

Abstract. The reactivity of the 1,3-dipolar cycloadditions of C₅N-diphenylnitronate with acrylonitrile in different microemulsion systems has been investigated. The effect of the nature of surfactant (cationic, anionic), a component of water- and oil-borne microemulsions, on the rate of this reaction has been studied. The electrostatically attractive character of cetyltrimethylammonium bromide, a cationic surfactant, would bring the reactants closer to each other; hence, a rate enhancement would ensue, particularly within the water-rich zone. Besides, the fact that acrylonitrile played a dual role, as a component of the microemulsion and a dipolarophile in the cycloaddition reaction, made the work-up advantageously sound. Additionally, the increase in reagents molar ratio was found to promote higher reactivity.

Keywords: acrylonitrile, cycloaddition, isoxazolidine, microemulsion, nitronate.

Received: 09 October 2018/ Revised final: 27 November 2018/ Accepted: 27 November 2018